
Summarising Smooth Information Criterion (SIC) Fits
Source:R/smoothic_functions.R
      summary.smoothic.Rdsummary method class “smoothic”
Usage
# S3 method for class 'smoothic'
summary(object, ...)Arguments
- object
- an object of class “ - smoothic” which is the result of a call to- smoothic.
- ...
- further arguments passed to or from other methods. 
Value
A list containing the following components:
- model- the matched model from the- smoothicobject.
- coefmat- a typical coefficient matrix whose columns are the estimated regression coefficients, estimated standard errors (SEE) and p-values.
- plike- value of the penalized likelihood function.
Examples
# Sniffer Data --------------------
# MPR Model ----
results <- smoothic(
  formula = y ~ .,
  data = sniffer,
  family = "normal",
  model = "mpr"
)
summary(results)
#> Call:
#> smoothic(formula = y ~ ., data = sniffer, family = "normal", 
#>     model = "mpr")
#> Family:
#> [1] "normal"
#> Model:
#> [1] "mpr"
#> 
#> Coefficients:
#> 
#> Location:
#>                   Estimate        SE       Z    Pvalue    
#> intercept_0_beta  0.739052  0.922250  0.8014  0.178106    
#> tanktemp_1_beta  -0.089290  0.040430 -2.2085  0.001233 ** 
#> gastemp_2_beta    0.226363  0.028131  8.0469 < 2.2e-16 ***
#> tankpres_3_beta          0         0       0         0    
#> gaspres_4_beta    5.200142  0.837761  6.2072 < 2.2e-16 ***
#> 
#> Scale:
#>                    Estimate        SE       Z    Pvalue    
#> intercept_0_alpha -0.643263  0.724285 -0.8881    0.1448    
#> tanktemp_1_alpha          0         0       0         0    
#> gastemp_2_alpha    0.056609  0.011283  5.0174 8.911e-13 ***
#> tankpres_3_alpha          0         0       0         0    
#> gaspres_4_alpha           0         0       0         0    
#> 
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Penalized Likelihood:
#> [1] -310.633
#> IC Value:
#> [1] 621.2661