
Summarising Smooth Information Criterion (SIC) Fits
Source:R/smoothic_functions.R
summary.smoothic.Rdsummary method class “smoothic”
Usage
# S3 method for class 'smoothic'
summary(object, ...)Arguments
- object
an object of class “
smoothic” which is the result of a call tosmoothic.- ...
further arguments passed to or from other methods.
Value
A list containing the following components:
model- the matched model from thesmoothicobject.coefmat- a typical coefficient matrix whose columns are the estimated regression coefficients, estimated standard errors (SEE) and p-values.plike- value of the penalized likelihood function.
Examples
# Sniffer Data --------------------
# MPR Model ----
results <- smoothic(
formula = y ~ .,
data = sniffer,
family = "normal",
model = "mpr"
)
summary(results)
#> Call:
#> smoothic(formula = y ~ ., data = sniffer, family = "normal",
#> model = "mpr")
#> Family:
#> [1] "normal"
#> Model:
#> [1] "mpr"
#>
#> Coefficients:
#>
#> Location:
#> Estimate SE Z Pvalue
#> intercept_0_beta 0.739052 0.922250 0.8014 0.178106
#> tanktemp_1_beta -0.089290 0.040430 -2.2085 0.001233 **
#> gastemp_2_beta 0.226363 0.028131 8.0469 < 2.2e-16 ***
#> tankpres_3_beta 0 0 0 0
#> gaspres_4_beta 5.200142 0.837761 6.2072 < 2.2e-16 ***
#>
#> Scale:
#> Estimate SE Z Pvalue
#> intercept_0_alpha -0.643263 0.724285 -0.8881 0.1448
#> tanktemp_1_alpha 0 0 0 0
#> gastemp_2_alpha 0.056609 0.011283 5.0174 8.911e-13 ***
#> tankpres_3_alpha 0 0 0 0
#> gaspres_4_alpha 0 0 0 0
#>
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Penalized Likelihood:
#> [1] -310.633
#> IC Value:
#> [1] 621.2661